Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0349023, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690913

RESUMEN

The Okinawa Trough (OT) is a back-arc basin with a wide distribution of active cold seep systems. However, our understanding of the metabolic function of microbial communities in the cold seep sediments of the OT remains limited. In this study, we investigated the vertical profiles of functional genes involved in methane, nitrogen, and sulphur cycling in the cold seep sediments of the OT. Furthermore, we explored the possible coupling mechanisms between these biogeochemical cycles. The study revealed that the majority of genes associated with the nitrogen and sulphur cycles were most abundant in the surface sediment layers. However, only the key genes responsible for sulphur disproportionation (sor), nitrogen fixation (nifDKH), and methane metabolism (mcrABG) were more prevalent within sulfate-methane transition zone (SMTZ). Significant positive correlations (P < 0.05) were observed between functional genes involved in sulphur oxidation, thiosulphate disproportionation with denitrification, and dissimilatory nitrate reduction to ammonium (DNRA), as well as between AOM/methanogenesis and nitrogen fixation, and between sulphur disproportionation and AOM. A genome of Filomicrobium (class Alphaproteobacteria) has demonstrated potential in chemoautotrophic activities, particularly in coupling DNRA and denitrification with sulphur oxidation. Additionally, the characterized sulfate reducers such as Syntrophobacterales have been found to be capable of utilizing nitrate as an electron acceptor. The predominant methanogenic/methanotrophic groups in the OT sediments were identified as H2-dependent methylotrophic methanogens (Methanomassiliicoccales and Methanofastidiosales) and ANME-1a. This study offered a thorough understanding of microbial ecosystems in the OT cold seep sediments, emphasizing their contribution to nutrient cycling.IMPORTANCEThe Okinawa Trough (OT) is a back-arc basin formed by extension within the continental lithosphere behind the Ryukyu Trench arc system. Cold seeps are widespread in the OT. While some studies have explored microbial communities in OT cold seep sediments, their metabolic potential remains largely unknown. In this study, we used metagenomic analysis to enhance comprehension of the microbial community's role in nutrient cycling and proposed hypotheses on the coupling process and mechanisms involved in biogeochemical cycles. It was revealed that multiple metabolic pathways can be performed by a single organism or microbes that interact with each other to carry out various biogeochemical cycling. This data set provided a genomic road map on microbial nutrient cycling in OT sediment microbial communities.

2.
Chemistry ; : e202401150, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639722

RESUMEN

In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se···N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se···N interactions beyond the crystalline state.

3.
Nanoscale ; 16(9): 4811-4825, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38312063

RESUMEN

Flammability feature of textiles is a big underlying risk causing fire disasters. The fabrication of reliable fire resistant and quick fire warning fabrics is imperative but challenging. Herein, three types of early fire-warning polyester fabrics, namely, FPP@AM-X, FPP@PM-X and FPP@AX-M1, with good flame retardant and piezoresistive sensing performance were developed by fabricating polyethyleneimine (PEI), ammonium polyphosphate (APP), phytic acid (PA) and MXenes onto phosphorus-containing flame retardant polyethylene terephthalate (FRPET) via polydopamine (PDA) mediated layer-by-layer self-assembly. Owing to the improved thermoelectric properties of MXenes, FPP@A5-M1 exhibited a maximum thermoelectric voltage of 0.59 mV at a temperature difference of 130 °C and can provide an ideal cyclic early fire warning response within 4 s. In addition, due to the synergistic flame retardant effect of MXenes and APP in the coating layer, FPP@A5-M1 could be self-extinguished within 2 s after ignition and the value of peak heat release ratio and total smoke production decreased by 41.9% and 30.4%, respectively. Besides, the MXene-based hybrid coated fabric can detect the movement of human fingers and elbows, illustrating its potential application in piezoresistive tension sensing. This work provides a new route to designing and developing multi-functional and smart fire protection fabrics.

4.
Angew Chem Int Ed Engl ; 62(52): e202314052, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37945536

RESUMEN

Azide compounds are widely used and especially, polymers bearing pendant azide groups are highly desired in numerous fields. However, harsh reaction conditions are always mandatory to achieve full azidation, causing severe side reactions and degradation of the polymers. Herein, we report the design and preparation of two azide ionic liquids (AILs) with azide anion and triethylene glycol (E3 )-containing cation, [P444E3 ][N3 ] and [MIME3 ][N3 ]. Compared with the traditional sodium azide (NaN3 ) approach, both AILs showed much higher reaction rates and functional-group tolerance. More importantly, they could act as both reagents and solvents for the quantitative azidation of various polymeric precursors under mild conditions. Theoretical simulations suggested that the outstanding performance of AILs originated from the existence of ion pairs during the reaction, and the E3 moieties played a crucial role. Lastly, after the reaction, the AILs could be easily regenerated, presenting a safer, greener, and highly efficient synthesis route for azide polymers.

5.
BMC Genomics ; 24(1): 594, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805512

RESUMEN

BACKGROUND: The composition and content of fatty acids in the breast muscle are important factors influencing meat quality. In this study, we investigated the fatty acid composition and content in the breast muscle of Gushi chickens at different developmental stages (14 weeks, 22 weeks, and 30 weeks). Additionally, we utilized transcriptomic data from the same tissue and employed WGCNA and module identification methods to identify key genes associated with the fatty acid composition in Gushi chicken breast muscle and elucidate their regulatory networks. RESULTS: Among them, six modules (blue, brown, green, light yellow, purple, and red modules) showed significant correlations with fatty acid content and metabolic characteristics. Enrichment analysis revealed that these modules were involved in multiple signaling pathways related to fatty acid metabolism, including fatty acid metabolism, PPAR signaling pathway, and fatty acid biosynthesis. Through analysis of key genes, we identified 136 genes significantly associated with fatty acid phenotypic traits. Protein-protein interaction network analysis revealed that nine of these genes were closely related to fatty acid metabolism. Additionally, through correlation analysis of transcriptome data, we identified 51 key ceRNA regulatory networks, including six central genes, 7 miRNAs, and 28 lncRNAs. CONCLUSION: This study successfully identified key genes closely associated with the fatty acid composition in Gushi chicken breast muscle, as well as their post-transcriptional regulatory networks. These findings provide new insights into the molecular regulatory mechanisms underlying the flavor characteristics of chicken meat and the composition of fatty acids in the breast muscle.


Asunto(s)
Pollos , Ácidos Grasos , Animales , Pollos/genética , Pollos/metabolismo , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Músculos Pectorales , Redes Reguladoras de Genes
6.
Dalton Trans ; 52(44): 16197-16205, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37873572

RESUMEN

A cobalt(II) complex and manganese(II) coordination polymer, formulated as [Co2(H2btca)(mbpy)4][H2btca]·4H2O (1) and {Mn2(btca)(mbpy)2(H2O)2}n (2) (H4btca = 1,2,4,5-benzenetetracarboxylic acid; mbpy = 4,4'-dimethyl-2,2'-bipyridyl), constructed by mixed bipyridine-tetracarboxylic ligands were synthesized and characterized. Single-crystal structural analyses reveal that compound 1 is a discrete neutral binuclear molecule, while compound 2 is a two-dimensional (2D) coordination polymer. The metal ions in these compounds are well isolated, with an intramolecular Co2+⋯Co2+ distance of 9.170 Å for 1 and Mn2+⋯Mn2+ separation of 10.984 and 11.164 Å for 2 due to the bulk tetracarboxylic linker. This isolation gives rise to a single-ion magnetism origin of the compounds. Magnetic studies reveal a large zero-field splitting parameter D of 82.6 cm-1 for 1, while a very small D of 0.42 cm-1 was observed for 2. Interestingly, dynamic ac magnetic measurements exhibited slow magnetic relaxation under the external dc field of the two compounds, revealing the field-supported single-ion magnet (SIM) of 1 and 2. The detailed theoretical calculations were further applied to understand the electronic structures, magnetic anisotropy, and relaxation dynamics in 1 and 2. Combined with our recently reported compound (Eur. J. Inorg. Chem., 2022, e202200354), the foregoing results provide not only a rare binuclear cobalt(II) SIM and the first 2D manganese(II) SIM coordination polymer but also a bipyridine-tetracarboxylic ligand approach toward novel SIMs.

7.
BMC Genomics ; 24(1): 434, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537524

RESUMEN

BACKGROUND: Fatty acids composition in poultry muscle is directly related to its tenderness, flavour, and juiciness, whereas its genetic mechanisms have not been elucidated. In this study, the genetic structure and key regulatory genes of the breast muscle fatty acid composition of local Chinese chicken, Gushi-Anka F2 resource population by integrating genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) strategies. GWAS was performed based on 323,306 single nucleotide polymorphisms (SNPs) obtained by genotyping by sequencing (GBS) method and 721 chickens from the Gushi-Anka F2 resource population with highly variable fatty acid composition traits in the breast muscle. And then, according to the transcriptome data of the candidate genes that were obtained and phenotypic data of fatty acid composition traits in breast muscle of Gushi chickens at 14, 22, and 30 weeks of age, we conducted a WGCNA. RESULTS: A total of 128 suggestive significantly associated SNPs for 11 fatty acid composition traits were identified and mapped on chromosomes (Chr) 2, 3, 4, 5, 13, 17, 21, and 27. Of these, the two most significant SNPs were Chr13:5,100,140 (P = 4.56423e-10) and Chr13:5,100,173 (P = 4.56423e-10), which explained 5.6% of the phenotypic variation in polyunsaturated fatty acids (PUFA). In addition, six fatty acid composition traits, including C20:1, C22:6, saturated fatty acid (SFA), unsaturated fatty acids (UFA), PUFA, and average chain length (ACL), were located in the same QTL intervals on Chr13. We obtained 505 genes by scanning the linkage disequilibrium (LD) regions of all significant SNPs and performed a WGCNA based on the transcriptome data of the above 505 genes. Combining two strategies, 9 hub genes (ENO1, ADH1, ASAH1, ADH1C, PIK3CD, WISP1, AKT1, PANK3, and C1QTNF2) were finally identified, which could be the potential candidate genes regulating fatty acid composition traits in chicken breast muscle. CONCLUSION: The results of this study deepen our understanding of the genetic mechanisms underlying the regulation of fatty acid composition traits, which is helpful in the design of breeding strategies for the subsequent improvement of fatty acid composition in poultry muscle.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Ácidos Grasos/química , Polimorfismo de Nucleótido Simple , Músculos , Genes Reguladores
8.
BMC Genomics ; 24(1): 386, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430185

RESUMEN

BACKGROUND: The development of abdominal fat and meat quality are closely related and can impact economic efficiency. In this study, we conducted transcriptome sequencing of the abdominal fat tissue of Gushi chickens at 6, 14, 22, and 30 weeks, and selected key miRNA-mRNA regulatory networks related to abdominal fat development through correlation analysis. RESULTS: A total of 1893 differentially expressed genes were identified. Time series analysis indicated that at around 6 weeks, the development of chicken abdominal fat was extensively regulated by the TGF-ß signaling pathway, Wnt signaling pathway, and PPAR signaling pathway. However, at 30 weeks of age, the apoptosis signaling pathway was the most significant, and correlation analysis revealed several genes highly correlated with abdominal fat development, including Fatty Acid Binding Protein 5 (FABP5). Based on miRNA transcriptome data, it was discovered that miR-122-5p is a potential target miRNA for FABP5. Cell experiments showed that miR-122-5p can directly target FABP5 to promote the differentiation of preadipocytes. CONCLUSION: The present study confirms that the key gene FABP5 and its target gene miR-122-5p are critical regulatory factors in the development of chicken abdominal fat. These results provide new insights into the molecular regulatory mechanisms associated with the development of abdomen-al fat in chickens.


Asunto(s)
Grasa Abdominal , Pollos , Proteínas de Unión a Ácidos Grasos , MicroARNs , Transcriptoma , Animales , Pollos/genética , Proteínas de Unión a Ácidos Grasos/genética , MicroARNs/genética , Grasa Abdominal/crecimiento & desarrollo , Transducción de Señal , Femenino , Adipocitos , Diferenciación Celular
9.
BMC Genomics ; 24(1): 98, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864386

RESUMEN

BACKGROUND: Serum biochemical indicators are often regarded as direct reflections of animal metabolism and health. The molecular mechanisms underlying serum biochemical indicators metabolism of chicken (Gallus Gallus) have not been elucidated. Herein, we performed a genome-wide association study (GWAS) to identify the variation associated with serum biochemical indicators. The aim of this research was to broaden the understanding of the serum biochemical indicators in chickens. RESULTS: A GWAS of serum biochemical indicators was carried out on 734 samples from an F2 Gushi× Anka chicken population. All chickens were genotyped by sequencing, 734 chickens and 321,314 variants were obtained after quality control. Based on these variants, a total of 236 single-nucleotide polymorphisms (SNPs) on 9 chicken chromosomes (GGAs) were identified to be significantly (-log10(P) > 5.72) associated with eight of seventeen serum biochemical indicators. Ten novel quantitative trait locis (QTLs) were identified for the 8 serum biochemical indicator traits of the F2 population. Literature mining revealed that the ALPL, BCHE, GGT2/GGT5 genes at loci GGA24, GGA9 and GGA15 might affect the alkaline phosphatase (AKP), cholinesterase (CHE) and γ-glutamyl transpeptidase (GGT) traits, respectively. CONCLUSION: The findings of the present study may contribute to a better understanding of the molecular mechanisms of chicken serum biochemical indicator regulation and provide a theoretical basis for chicken breeding programs.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Fosfatasa Alcalina , Genotipo , Fenotipo
10.
Sheng Li Xue Bao ; 75(1): 10-16, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36859830

RESUMEN

The present study was aimed to investigate whether Gasdermin D (GSDMD)-mediated pyroptosis participated in lipopolysaccharide (LPS)-induced sepsis-associated acute kidney injury (AKI), and to explore the role of caspase-1 and caspase-11 pyroptosis pathways in this process. The mice were divided into four groups: wild type (WT), WT-LPS, GSDMD knockout (KO) and KO-LPS. The sepsis-associated AKI was induced by intraperitoneal injection of LPS (40 mg/kg). Blood samples were taken to determine the concentration of creatinine and urea nitrogen. The pathological changes of renal tissue were observed via HE staining. Western blot was used to investigate the expression of pyroptosis-associated proteins. The results showed that the concentrations of serum creatinine and urea nitrogen in the WT-LPS group were significantly increased, compared with those in the WT group (P < 0.01); whereas serum creatinine and urea nitrogen in the KO-LPS group were significantly decreased, compared with those in the WT-LPS group (P < 0.01). HE staining results showed that LPS-induced renal tubular dilatation was mitigated in GSDMD KO mice. Western blot results showed that LPS up-regulated the protein expression levels of interleukin-1ß (IL-1ß), GSDMD and GSDMD-N in WT mice. GSDMD KO significantly down-regulated the protein levels of IL-1ß, caspase-11, pro-caspase-1, caspase-1(p22) induced by LPS. These results suggest that GSDMD-mediated pyroptosis is involved in LPS-induced sepsis-associated AKI. Caspase-1 and caspase-11 may be involved in GSDMD cleavage.


Asunto(s)
Lesión Renal Aguda , Caspasas , Sepsis , Animales , Ratones , Caspasa 1 , Caspasas/metabolismo , Creatinina , Lipopolisacáridos , Ratones Noqueados , Nitrógeno , Urea , Gasderminas/metabolismo
11.
Materials (Basel) ; 16(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36836988

RESUMEN

The metabolic disorder of the wound microenvironment can lead to a series of serious symptoms, especially chronic wounds, which result in significant pain in patients. At present, there is no effective and widely used wound dressing. Therefore, it is important to develop new multifunctional wound dressings. Hydrogel is an ideal wound dressing for medical nursing because of its abilities to absorb exudate and maintain wound wetting, its excellent biocompatibility, and its ability to provide a moist environment for wound repair. Because of these features, hydrogel overcomes the shortcomings of traditional dressings. Therefore, hydrogel has high medical value and is widely studied. In this study, a biodegradable hydrogel based on polysaccharide was synthesized and used as a wound dressing. The swelling degree and degradability of hydrogel were characterized as the characteristics of the wound dressing. The results showed that the prepared hydrogel was degraded with trypsin and in the soil environment. Furthermore, the wound dressing can effectively inhibit the bacterial environment, promote the deposition of the collagen structure of the wound tissue, and accelerate the healing of the wound. The proposed hydrogel has value in practical medical nursing application.

12.
iScience ; 26(12): 108463, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187191

RESUMEN

Renal tubular epithelial cells injury is one of the most important pathological features in hyperuricemic nephropathy (HN). However, the involvement of gasdermin D (GSDMD)-mediated pyroptosis in HN remains obscure. We found GSDMD was upregulated in the kidney tissue of HN mice, which was accompanied by the loss of renal function, renal tubular fibrosis, and reduced body weight. These changes in HN mice were inhibited by GSDMD knockout. Knockdown of GSDMD inhibited the high uric acid-induced injury in cultured cells (NRK-52E). Mechanistically, co-immunoprecipitation showed that RIG-I exist in a complex with caspase-1. Overexpression of RIG-I induced increased expression of caspase-1 protein and caspase-1 activity. Caspase-1 interference significantly reduced the increase of caspase-1 activity and IL-1ß production caused by RIG-I overexpression. Knockdown of RIG-I or caspase-1 decreased high uric acid-induced injury in NRK-52E. This work illustrates that targeting the RIG-I/caspase-1/GSDMD may provide potential therapeutic benefits to HN.

13.
Parasit Vectors ; 15(1): 490, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572911

RESUMEN

BACKGROUND: Increasing evidence has shown that non-coding RNA (ncRNA) molecules play fundamental roles in cells, and many are stable in body fluids as circulating RNAs. Study on these ncRNAs will provide insights into toxoplasmosis pathophysiology and/or help reveal diagnostic biomarkers. METHODS: We performed a high-throughput RNA-Seq study to comprehensively profile the microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) in rabbit serum and urine after infection with Toxoplasma gondii oocysts during the whole infection process. RESULTS: Total RNA extracted from serum and urine samples of acutely infected [8 days post-infection (DPI)], chronically infected (70 DPI) and uninfected rabbits were subjected to genome-wide small RNA sequencing. We identified 2089 miRNAs and 2224 novel piRNAs from the rabbit sera associated with T. gondii infection. Meanwhile, a total of 518 miRNAs and 4182 novel piRNAs were identified in the rabbit urine associated with T. gondii infection. Of these identified small ncRNAs, 1178 and 1317 serum miRNAs and 311 and 294 urine miRNAs were identified as differentially expressed (DE) miRNAs in the acute and chronic stages of infections, respectively. A total of 1748 and 1814 serum piRNAs and 597 and 708 urine piRNAs were found in the acute and chronic infection stages, respectively. Of these dysregulated ncRNAs, a total of 88 common DE miRNAs and 120 DE novel piRNAs were found in both serum and urine samples of infected rabbits. CONCLUSIONS: These findings provide valuable data for revealing the physiology of herbivore toxoplasmosis caused by oocyst infection. Circulating ncRNAs identified in this study are potential novel diagnostic biomarkers for the detection/diagnosis of toxoplasmosis in herbivorous animals.


Asunto(s)
Líquidos Corporales , Lagomorpha , MicroARNs , Toxoplasma , Toxoplasmosis , Animales , Conejos , MicroARNs/genética , Toxoplasma/genética , ARN de Interacción con Piwi , Oocistos/genética , Biomarcadores
14.
Genes (Basel) ; 13(11)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36360215

RESUMEN

Circular RNAs (circRNAs) play a significant regulatory role during skeletal muscle development. To identify circRNAs during postnatal skeletal muscle development in chickens, we constructed 12 cDNA libraries from breast muscle tissues of Chinese Gushi chickens at 6, 14, 22, and 30 weeks and performed RNA sequencing. In total, 2112 circRNAs were identified, and among them 79.92% were derived from exons. CircRNAs are distributed on all chromosomes of chickens, especially chromosomes 1-9 and Z. Bioinformatics analysis showed that each circRNA had an average of 38 miRNA binding sites, 61.32% of which have internal ribosomal entry site (IRES) elements. Furthermore, in total 543 differentially expressed circRNAs (DE-circRNAs) were identified. Functional enrichment analysis revealed that DE-circRNAs source genes are engaged in biological processes and muscle development-related pathways; for example, cell differentiation, sarcomere, and myofibril formation, mTOR signaling pathway, and TGF-ß signaling pathway, etc. We also established a competitive endogenous RNA (ceRNA) regulatory network associated with skeletal muscle development. The results in this report indicate that circRNAs can mediate the development of chicken skeletal muscle by means of a complex ceRNA network among circRNAs, miRNAs, genes, and pathways. The findings of this study might help increase the number of known circRNAs in skeletal muscle tissue and offer a worthwhile resource to further investigate the function of circRNAs in chicken skeletal muscle development.


Asunto(s)
MicroARNs , ARN Circular , Animales , ARN Circular/genética , Pollos/genética , Pollos/metabolismo , Desarrollo de Músculos/genética , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo
15.
Ren Fail ; 44(1): 1780-1790, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36285371

RESUMEN

PURPOSE: Glomerular mesangial cell (GMC) dysfunction plays a vital role in the pathogenesis of diabetic kidney disease (DKD). Transient receptor potential canonical 6 (TRPC6) has been demonstrated to be involved in the development of DKD. However, the underlying mechanism remains unclear. The present study investigated the role of TRPC6 in GMC dysfunction and the related mechanism. METHODS: Diabetic rats and cultured GMCs were used in the experiment. The diabetic rat model was created by intraperitoneal injection of streptozotocin. Protein and mRNA levels were assessed by Western blotting and quantitative RT-PCR, respectively. Histological changes in the kidneys were observed by immunochemistry and hematoxylin and eosin. TRPC6 knockdown was achieved by adenovirus-mediated TRPC6 shRNA delivery in vivo and TRPC6 siRNA transfection in vitro. RESULTS: TRPC6 expression was increased in diabetic rat kidneys. Knockdown of TRPC6 attenuated diabetes-induced kidney functional deterioration. In addition, the increases in extracellular matrix components, including collagen IV, collagen I, and fibronectin production, as well as NFAT2 expression were also suppressed. In cultured GMCs, high glucose (25 mM, HG) treatment increased the expression of TRPC6. Knockdown of TRPC6 alleviated HG-induced increases in collagen IV, fibronectin, and NFAT2 expression. Knockdown of NFAT2 also inhibited the upregulation of proteins, including collagen IV and fibronectin, in HG-treated GMCs. CONCLUSION: These results demonstrate that inhibition of TRPC6/NFAT2 signaling attenuates GMC dysfunction and the development of DKD and suggest that pharmacological targeting of TRPC6/NFAT2 in GMCs may provide beneficial effects for DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas , Animales , Células Mesangiales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibronectinas/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , ARN Interferente Pequeño/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Hematoxilina/metabolismo , Hematoxilina/farmacología , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Linfocitos T , Glucosa/metabolismo , ARN Mensajero/metabolismo , Colágeno/metabolismo , Células Cultivadas
16.
Sci Total Environ ; 851(Pt 2): 158213, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36028040

RESUMEN

Shallow methane/sulfate transition zones in cold seeps are hotspots to study microbially mediated geochemical cycles due to high methane fluxes. However, our knowledge about the microbial communities in remote seafloor cold seep ecosystems with different methane seepage intensity is still sparse due to the challenge for sampling and visual observations. In this work, three remotely operated vehicle (ROV) video-guided push sediment cores were sampled from cold seep fields with different methane seepage intensity (low-intensity seepage, R5-C1; moderate-intensity seepage, R6-C2; high-intensity seepage, R6-C3) at the western slope of Mid-Okinawa Trough (Mid-OT) and subjected to high throughput sequencing of 16S rRNA genes for bacteria and archaea. Vesicomyid clams and white microbial mats are visible by video at R6-C3 with methane bubbles. The high relative abundances of anaerobic methanotrophic archaea (ANME-1, -2, and -3), δ-Proteobacteriacea and Campylobacteria in R6-C3 indicated that the processes of anaerobic methane oxidation (AOM), sulfate reduction and sulfur oxidation might occur in this active seeping site. In contrast, Bathyarchaeia, Nitrosopumilales, Sphingomonadales, and Burkholderiales were enriched in bubble-free sites, which commonly involved in the degradation of organic compounds. Principal coordinate analysis showed that both bacterial and archaeal communities were clustered according to sampling sites, also indicating the impact of methane seepage intensity on microbial communities. The co-occurrence network analysis revealed that microbes at the site with high methane fluxes mainly cooperated with each other to sustain the ecosystems, whereas competition enhanced at sites with low methane fluxes. Detection of thermophiles Thermoanaerobaculia and Hydrothermarchaeota may indicate microbial transmission from nearby hydrothermal vents, suggesting potential interactions between cold seepage and hydrothermal vent ecosystems. These results expand our knowledge about the composition and distribution of bacteria and archaea with different methane seepage intensity in cold seep field at the Mid-OT, contributing to the ongoing efforts in understanding carbon cycling in the cold seep ecosystems.


Asunto(s)
Metano , Microbiota , Metano/metabolismo , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Sedimentos Geológicos/química , Filogenia , Archaea , Bacterias/metabolismo , Sulfatos/metabolismo , Oxidación-Reducción , Azufre/metabolismo , Carbono/metabolismo
17.
Scanning ; 2022: 8750394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003077

RESUMEN

In order to better prepare and analyze bacterial cellulose-based composite hydrogels, an experimental method based on scanning electron microscopy was proposed. The specific content of the method is to observe the hydrogel through scanning electron microscope, to observe the space between molecules through experiments, and to improve the effect of bacterial cellulose preparation of hydrogel. The experimental results show that the gel preparation effect is best when PEG concentration is not more than observed by scanning electron microscope. It is better to prepare bacterial cellulose complex hydrogel by scanning electron microscopy.


Asunto(s)
Celulosa , Hidrogeles , Bacterias , Microscopía Electrónica de Rastreo
18.
Int J Parasitol Parasites Wildl ; 18: 244-248, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35800108

RESUMEN

Understanding the mechanisms driving parasite distributions is not only important for understanding ecosystem functioning, but also crucial for disease control. Previous studies have documented the important roles of host sex, host body size, host behavioral trait (such as boldness and trappability), and seasonality in shaping parasite load. However, few studies have simultaneously assessed the roles of these factors, as well as their interactions. In spring and summer of 2021, we conducted live trapping in Hohhot, China, to collect ectoparasites on Daurian ground squirrel (Spermophilus dauricus), a small rodent widely distributed in East Asian grassland. We then used generalized linear models to explore the effects of several biological factors (sex, body weight, trappability, and reproductive status) and seasonality on the abundance of ticks and fleas in S. dauricus. Significant but inconsistent seasonal effects were observed: tick load was significantly greater in summer than in spring, while flea load was greater in spring than in summer. Seasons also significantly interacted with host trappability and body weight to affect tick abundance. Our results highlight the importance of considering seasonal changes in parasitism, as well as interactions between season and host biological traits in shaping parasite distributions.

19.
Front Microbiol ; 13: 819187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495656

RESUMEN

Active cold seeps in the Okinawa Trough (OT) have been widely identified, but the sediment microbial communities associated with these sites are still poorly understood. Here, we investigated the distribution and biomass of the microbial communities, particularly those associated with the anaerobic oxidation of methane (AOM), in sediments from an active cold seep in the mid-Okinawa Trough. Methane-oxidizing archaea, including ANME-1a, ANME-1b, ANME-2a/b, ANME-2c, and ANME-3, were detected in the OT cold seep sediments. Vertical stratification of anaerobic methanotrophic archaea (ANME) communities was observed in the following order: ANME-3, ANME-1a, and ANME-1b. In addition, the abundance of methyl coenzyme M reductase A (mcrA) genes corresponded to high levels of dissolved iron, suggesting that methane-metabolizing archaea might participate in iron reduction coupled to methane oxidation (Fe-AOM) in the OT cold seep. Furthermore, the relative abundance of ANME-1a was strongly related to the concentration of dissolved iron, indicating that ANME-1a is a key microbial player for Fe-AOM in the OT cold seep sediments. Co-occurrence analysis revealed that methane-metabolizing microbial communities were mainly associated with heterotrophic microorganisms, such as JS1, Bathy-1, and Bathy-15.

20.
BMC Genomics ; 23(Suppl 1): 311, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439939

RESUMEN

BACKGROUND: Deep-sea mussels living in the cold seeps with enormous biomass act as the primary consumers. They are well adapted to the extreme environment where light is absent, and hydrogen sulfide, methane, and other hydrocarbon-rich fluid seepage occur. Despite previous studies on diversity, role, evolution, and symbiosis, the changing adaptation patterns during different developmental stages of the deep-sea mussels remain largely unknown. RESULTS: The deep-sea mussels (Bathymodiolus platifrons) of two developmental stages were collected from the cold seep during the ocean voyage. The gills, mantles, and adductor muscles of these mussels were used for the Illumina sequencing. A total of 135 Gb data were obtained, and subsequently, 46,376 unigenes were generated using de-novo assembly strategy. According to the gene expression analysis, amounts of genes were most actively expressed in the gills, especially genes involved in environmental information processing. Genes encoding Toll-like receptors and sulfate transporters were up-regulated in gills, indicating that the gill acts as both intermedium and protective screen in the deep-sea mussel. Lysosomal enzymes and solute carrier responsible for nutrients absorption were up-regulated in the older mussel, while genes related to toxin resistance and autophagy were up-regulated in the younger one, suggesting that the older mussel might be in a vigorous stage while the younger mussel was still paying efforts in survival and adaptation. CONCLUSIONS: In general, our study suggested that the adaptation capacity might be formed gradually during the development of deep-sea mussels, in which the gill and the symbionts play essential roles.


Asunto(s)
Mytilidae , Transcriptoma , Animales , Branquias/metabolismo , Metano/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...